

使用手册

PCI 1X0 单/双通道 PCI-CAN 接口卡

[知识产权保护声明]

使用UIROBOT产品前请注意以下三点:

- UIROBOT的产品均达到UIROBOT使用手册中所述的技术功能要求。
- UIROBOT愿与那些注重知识产权保护的客户合作。
- •任何试图破坏UIROBOT器件代码保护功能的行为均可视为违反了知识产权保护法案和条列。如果这种行为导致在未经UIROBOT授权的情况下,获取软件或其他受知识产权保护的成果,UIROBOT有权依据该法案提起诉讼制止这种行为。

[免责声明]

本使用手册中所述的器件使用信息及其他内容仅为您提供便利,它们可能在未来版本中被更新。确保应用符合技术规范,是您自身应负的责任。UIROBOT对这些信息不作任何形式的声明或担保,包括但不限于使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。UIROBOT对因这些信息及使用这些信息而引起的后果不承担任何责任。如果将UIROBOT器件用于生命维持和/或生命安全应用,一切风险由买方自负。买方同意在由此引发任何一切伤害、索赔、诉讼或费用时,会维护和保障UIROBOT免于承担法律责任和赔偿。未经UIROBOT同意,不得以任何方式转让任何许可证。

[商标和外观设计声明]

UIROBOT 的名称和徽标组合为 UIROBOT Ltd.在中国和其他国家或地区的注册商标。 UIROBOT的UIM24XXX系列步进电机(控制)驱动器和UIM25XX系列转换控制器外观设计均以申请专利保护。

[PCI1X0 产品订购说明]

在订购 PCI1X0 产品时请按以名下格式提供产品号,以便我们准确及时地为您提供产品:

PCI1X0 产品牌号

PCI1X0 PCI-CAN 接口卡

性能指标

- PC 接口:通用 PCI 接口,兼容 PCI2.2 规范;
- 帧流量: 3000 帧/S
- 传输方式: CAN2.0A 和 CAN2.0B 协议;
- 通道数目: 支持 1/2 路 CAN 控制器,每路均可单独控制;
- 传输介质:屏蔽或非屏蔽双绞线;
- 传输速率: CAN 控制器波特率在 5Kbps~1Mbps 之间可选;
- 通讯接口: CAN-bus 接口采用光电隔离、DC-DC 电源隔离,隔离模块绝缘电压: 2500V;
- 总线长度及节点数: 单路总线上最多可接 110 个节点, 最长通讯距离 10 公里;
- 占用资源:即插即用,资源自动分配;
- 工作温度: -25℃~+70℃
- 存储温度: -55℃~+85℃

*注: PCI1X0 接口卡具体性能指标与使用的 PC 硬件配置及操作系统紧密相关。

简介

PCI110/120 接口卡集成 1/2 路 CAN 通道,可以连接 CAN 总线并实现 CAN2.0B 协议(兼 容 2.0A)的数据通讯。兼容 PCI2.2 规范,即插即用。

PCI110/120 接口卡的每路 CAN 通道都集成完全的电气隔离保护、防浪涌保护,抗干扰能力强,是一款性能稳定、通讯可靠的 CAN 接口卡。

PCI110/120 接口卡支持 5Kbps ~ 1Mbps 之间的波特率,提供多个操作系统的驱动程序、并 附带 VB, VC, C++Builder, Dephi, VB2003, Labview 下的应用例程。能真正的满足客户的各 种应用需求,为工业通讯 CAN 网络提供了可靠性、高效率的解决方案。

设备安装

硬件安装

PCI1X0 CAN 接口卡是属于静电敏感产品,出厂时安放在专用保护袋中。因此,在对接口 卡进行操作时,请注意采取必要的防护措施,以保证接口卡不受损坏。

硬件安装时要在 PC 断电状态下,同样,拆卸 PCI1X0 接口卡也应当在 PC 断电的状态下进行。

PCI1X0 接口卡没有任何开关和跳线用于分配中断和 I/O 地址,这些都是由 BIOS 自动分配 的。因此,在安装驱动程序之前板卡必须事先安装到 PCI 槽上。以下是安装步骤:

- 1. 关闭 PC 电源。
- 2. 打开 PC 的盖子。
- 3. 将 PCI1X0 接口卡插入空闲的 PCI 插槽。
- 4. 拧紧固定板卡的螺钉。
- 5. 打开 PC 电源,此时 BIOS 会自动给 PCI120 接口卡分配中断和 I/O 地址。

图 0-1 PCI 接口卡的安装

警告:请勿带电插拔 PCI 接口卡;安装时不要用手触摸器件,防止静电损坏器件。

硬件接口描述

PCI110/120 接口卡提供 1/2 个 CAN-bus 通道,通过 DB9 针型连接器与实际的 CAN-bus 网络进行连接。DB9 针型连接器的引脚信号定义如表所示。引脚定义符合 DeviceNet 和 CANopen 标准。

单/双通道 PCI-CAN 接口卡

图 0-2 接口卡的 DB9 插座位置

表 0-1 DB9 针型连接器的引脚信号定义

引脚	信号	描述
1	N. C.	
2	CAN_L	CAN_L 信号线
3	CAN_GND	参考地
4	N. C.	
5	CAN_SHIELD	屏蔽线
6	CAN_GND	参考地
7	CAN_H	CAN_H 信号线
8	N. C.	
9	N. C.	

终端电阻

PCI1X0 接口卡内建 120 欧姆终端电阻,如果设备位于 CAN 网络的端点,请将对应 CAN 通道的跳线器跳线连上,或者在该设备端口的 CAN_H 和 CAN_L 之间接上一个约 120 欧姆 的终端电阻。PCI1X0 接口卡采用的是 PCA82C251 收发器,如果网络上其他节点使用不同 的收发器,则终端电阻须另外计算。

图 0-3 跳线器位置说明

驱动程序安装

请将配套光盘<Driver>目录的文件拷贝到硬盘。为了确保任何时候安装都可以正确指定相应的驱动程序,请严格按照以下步骤进行安装处理(以 PCI120 为例, PCI110 安装步骤与 PCI120 一致)。

在 WinXP 系统下安装

如果已将 PCI120 接口卡插入 PC 的 PCI 插槽,则在重启系统之后,PC 会提示发现新硬件, 如图 0-4 所示,此时应该选择"从列表或指定位置安装(高级)",然后单击"下一步":

图 0-4 欢迎使用找到新硬件向导

单/双通道 PCI-CAN 接口卡

当出现如图 0-5 所示的对话框,选择"不要搜索,我要自己选择要安装的驱动程序"项, 然 后单击"下一步":

图 0-5 请选择你的搜索和安装选项

清选择您的	想索和安装选项。
○在这 使用 到的	些位置上搜索最佳驱动程序 (S)。 下列的复选框限制或扩展默认搜索,包括本机路径和可移动媒体。会安装找 最佳驱动程序。
● 不要 选择 动程	搜索可移动媒体(软盘、CD-BOM)@) 在搜索中包括这个位置 @): G.\Workspace\PCI_CAN\PCI_120XX\SoftwareVI.3 ✔ 浏览 (B) 搜索. 我要自己选择要安装的驱动程序 @). 这个选项以便从列表中选择设备驱动程序。Windows 不能保证您所选择的驱 予与您的硬件最匹配。
	< 上一步 (8) 下一步 (8) > ■ 取消

当出现如图 0-6 所示对话框时,单击"型号"栏中的空白处,暂时不选中任何型号,接着单击 "从磁盘安装"按钮以指定 PCI120 目录位置。

图 0-6 选择要为此硬件安装的设备驱动程序(1)

硬件更新向导	
选择要为此硬件安装的设备驱动程序	
☐ 请选定硬件的厂商和型号,然后单击 置置 程序的磁盘,请单击"从磁盘安装"	"下一步"。 如果手头有包含要安装的驱动 •
▶ 문	
PCI-120XX PCICAN Communication Card	
於	从磁盘安装(出)
	< 上一步 (b) 下一步 (b) > 取消

当出现如图 0-7 所示对话框时,我们可以通过"浏览"按键找到驱动程序的 inf 文件:

图 0-7 选择"从磁盘安装"

~~~~	
日期 人産	盘安装 🔀 🛛
一 显 王 王	插入厂商的安装盘,然后确定已在下面选定正确 确定 的驱动器。 取消
	) 商又作夏制米線(C): G:\Warkspace\PCI CAN\PCI 120XX\SaftwaraVI V (浏览(R))
告诉我为	为什么驱动程序签名很重要

查找文件结果如图 0-8 所示,选中相应文件"PCI120XX.inf"后单击"打开": 图 0-8 查找文件 (1)

查找文件				? 🛛
查找范围(L):	🗀 Drivers		🔽 🧿 🗊 📴 🛄 •	
表最近的文档	PCI120XX.inf			
1.37.640	文件名(图):	PCI120XX.inf	~	打开(0)
	文件类型 (1):	安裝信息 (*.inf)		取消

当出现如图 **0-9** 对话框并确定目录正确后(目录不对的话必须单击"上一步"重新查找到对为止),单击"确定" 键:

图 0-9 查找文件(2)

巴丛	毎堂安装 🛛 🚺 🕅
]显 型 F	插入厂商的安装盘,然后确定已在下面选定正确 确定 的驱动器。 取消
	厂商文件复制来源 (C):
	G:\Workspace\PCI_CAN\PCI_120XX\SoftwareV1 V [浏览图)

接着如图 0-10 所示,这时我们才选中相应的板卡型号,确定选中正确型号后单击"下一步": 图 0-10 选择要为此硬件安装的设备驱动程序(2)

硬件更新向导	
选择要为此硬件安装的设备驱动程序	
请选定硬件的厂商和型号,然后单击"下一步"。如果手头有包含要安装的驱动 程序的磁盘,请单击"从磁盘安装"。 ✓显示兼容硬件 [2]	
型号	
PCI-120XX PCICAN Communication Card	
▲ 这个驱动程序没有经过数字签署!   《 出版:	
< 上一步 (2) 下一步 (2) > 取消	

继续安装,直到出现图 0-11 所示对话框;此时,单击"完成",即完成了驱动的安装。

图 0-11 完成找到新硬件向导

硬件更新向导	
	完成硬件更新向导
	该向导已经完成了下列设备的软件安装:
	FCI-120XX PCICAN Communication Card
	要关闭向导,请单击"完成"。
	(上一步低)「元成」「取消」

安装成功后, "设备管理器"中将列出所安装的 PCI120 接口卡。图 0-12 为安装完成 1 块 PCI120 接口卡后的设备管理器界面。

#### 图 0-12WinXP 的设备管理器

□ 设备管理器	
文件(2)操作(a)查看(2)帮助(3)	
←→ 🗉 🖆 😫 😤 📚 😹	
□	^
□	
- He PCI CAN	
● ● SCSI 和 RAID 控制器	
● ◆ 处理器 ● ◆ 磁盘驱动器	
田 📝 端口 (COM 和 LPT)	
1 2 谜面	×

- 在 Win2000 系统下安装

在 Win2000 系统下安装 PCI120 接口卡的过程与 WinXP 系统类似,这里不再多讲,需要注意的是:任何时候安装都要尽可能手工选择,而不要使用自动安装。

#### 产品使用

- PCI1X0 演示程序说明

该演示程序是对外开放的,专门为客户定做的演示程序,操作极为方便,安装包里面还附带一个 Demo 程序,里面有源代码,帮助客户编程使用。如果需要编程,详见 PCI1X0_SDK

文档说明书,同时还可以参考 Demo 源代码辅助编程。下面以 PCI120 为例说明演示程序的 使用,PCI110 使用方法与 PCI120 一致。

- PCI120 演示程序简单操作

1.首先打开软件进入主界面如图 0-13,卡型号选择"UI_PCI120",通道选择 CAN0 号,比 特率是根据我们的驱动器设置的,这里我们的驱动器是 800,主机地址为 1。

图 0-13

時日         CAN通道         CAN E         CAN E         CAN E <thc< th=""></thc<>
位 時考理     近 時考理     近 時     近 時     近 時     近 時     近 時     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 明     近 10     近     近 10     近 10     近     近 10     近     近 10     近 10     近     近 10     近 10     近 10     近     近     近     近 10     近 10     近 10     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近     近

2.单机"初始化 CAN 按钮"进入如下界面,这个时候操作界面状态变为可操作状态如图 0-14

#### 图 0-14

	选择语言		基本设置	电机状态参数		传感器控制			
BIROLOT	Chinese	•	电机参数设置	使能驱动	8	S12CON	\$340	ON	
AN通讯			编码器设置	脱机		ATCONH	ATCO	NL	切换单机
N·卡型号 UI_PCI120	通道 CAN0	-	驱动器型号	电机驱动参	数	STORE	传感器	状态	定期合理99 <<
特率 800 🔹 主机地址 1 🔄	· 关i	đ	主寄存器	当前电机状	态	SQT	UIDS	20	
2.850		9.0	运动控制			「高级运	动设置		
	-	40 Z	期望速度	0	设置		加速模式	设置	
前指令	報	助	期望位移增量	0	设置	0	始直(1-65,00 計画(1-60,00		
近指令	•		期望井州绝对应查	0	设置		ilel(1-en)n	ums)	
			州至海豹高位五	lo	设置	加	重度。查询。	0	设装
时状态变化通知报文	清	ĩ	使能 ORG	»»	脱机	最大启动	重度 查询	0	-192
	Jacobson (1999)	*	□ 开启监控(连续查	) 间隔 5	00 -	ms	乘速模5	<b>北设置</b>	
			速度		查询	6	批值(1-65,0		
			位移增量		查询	C	时间(1-60,0	00ms)	
			开环绝对位置		查询	- M	<b>重度</b>	0	-1Q2
			编码器位置		查询	最大時停	<b>東度</b> - <b>亚</b> 词	0	设置
回报文(十六进制) 「开启清息解	III 清空	日志	返回报文解释						
		~							

3.单机"切换单机网络模式"按钮,如图 0-15

图 0-15

	译语言 inese CAN0 关	• •	基本设置 电机参数设置 编码器设置 驱动器型号 主寄存器	电机状态参数 使能驱动器 脱机 电机驱动参数 当前电机状态	传感器控制 S12CON ATCONH STORE SQT	S34CON ATCONL 传感器状态 UID820	>> 切换单机 网络模式 >>
▲入描令       	发送	命令 助	运动控制 期望速度 期望位移增量 期望开环绝对位置 期望编码器位置	0 设置 0 设置 0 设置 0 设置	「 高級)法 の 計 加速	加速模式设置 加速模式设置 値(1-65,000,000,0 荷(1-60,00ms) 変度 変更 の	
		¥ ()	(茶飯) CH3 证 并启监控(连续查) 速度 位移增量 开环络对位置 编码器位置	※ 取代 (利) 间隔 500 · 査询 査询 査询 査询	ms C B 成员 最大的保密	項連模式设置 計畫(1-65,000,000 詞(1-60,000ms) 設定 査由 0 度度 査相 0	pps/s) i段语 i段语
2日按文(十六进制) 「 开启:月照新译	君王	<u> </u>	返回服文解释	单机"切换单机 模式"按钮	948		

4.切换到 CAN 的网络模式,单机"全局注册"按钮,如图 0-16

图 0-16

	基本设置	电机状态参数	4 昭器控制		1	CANSIE广 新授作	1. E-1 m
Chinese •	电机参数设置	使能够动器	\$1200N	S34CON		通讯理车联盟 运用	4月:王樹
CAN通讯	编码器设置	脱机	ATCONH	ATCONL	切换单机	使能 股机 厂电	意職手
CAN核型号 UIL_PCI120 _ CAN通道 (CAN0 _	植动器型号	电机和动参数	STORE	传感器状态	P90018.35	电流 0 AMP	发布
比特家 600 • 主机地址 1 • 关闭	主寄存器	当前电机状态	SQT	UID820		細分 ●102040	8 16
	运动的空制		「高级送	动设置		gORG	
4/382 02 02	MUSER	0 设置		加速模式设置		速度 0	发布
当前指令 載助	期望位移增量	0 设置	6 11	111-65,000,000;		<b>秋</b> 中 0	发布
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	制設計が絶対反流	0 22	4.13	ELLI-BOADUNE)		位置 0	发布
The second second	AVIE HIS VER CELL	10 82			- Bittle	(编码器: ⁰	发布
AFIT(0.5(化置和报义 青空	使能 ORG	>> I 股机	最大自动派	1 直通 0	120	操作状态	
	厂 开启监控G连续查	湖) 间隔 500 • m		城建模式设置	/		
	速度	童海	61	HA (1-65,000,000	005/17	FILTER LINE	( marked
	位移增量	查询				39 UIM24204-M-SI	P 1228
	开环绝对位置	童调	14.5		- Para	40 UIM24204-M-SI	P 1228
	编码器位置	童母	重大時保護		1-ridle-	43 UM24204-M-SI	2 1228 2 1228
8田报文(十六进制) 「 开启清息解释 清空 日志	透回报文解释				1	-	
		打協	到网络横,	北下 前机	-	1	
		73124	101-10-10-10-10-10-10-10-10-10-10-10-10-		-		
		同站	点注册" · 1	女钮			
		10.4	2014 - 242	0080			
		1支赤	到41.7242	766GB			
		动器			1121		

5.搜索到连接在 CAN 上的 4 个 242 驱动器,至此,就可以分别操作每个驱动器,如驱动器 使能,脱机,SPD,全局指令,等一切驱动器支持的指令都可以操作。

### 用户编程

用户如果只是利用接口卡进行 CAN 总线通信测试,可以直接利用随机提供的测试软件,进行收发数据的测试。如果用户打算编写自己产品的软件程序,请仔细阅读本章节。

PCI120 CAN 接口卡的函数接口非常简单,主要由:打开设备,初始化,发送数据,接受数据,关闭设备以及一些辅助函数组成,函数接口类似与 ZLG CAN 接口卡。光盘中附带 VB、VC、C++Builder、Delphi、Labview 的完整例程。

#### 结构体定义

- 定义 CAN -	卡的设备信息结构体 PCIIr	nfo
typedef struct	tagPCIInfo {	
int	iDevIndex;	// 设备号
int	iChannl;	// 通道号
SPCICanTyp	be sType;	// 设备类型
} PCIInfo;		
iDevIndex PC	1设备的索引号。	
iChannl	PCI 卡口的通道号。	
sType 设备	备类型,SPCICanType 定	义详见如下。
- 定义驱动器	主寄存器信息结构体参数	MCFGInfo
typedef struct	tagMCFGInfo {	
bool	bANE;	
bool	bCHS;	
bool	bQEI;	
bool	bQEM;	
bool	bCM;	
bool	bAM;	
bool	bDM;	
bool	bSTLIE;	
bool	bORGIE;	
bool	bSTPIE;	
bool	bP4IE;	
bool	bS3IE;	
bool	bS2IE;	
bool	bS1IE;	
} MCFGInfo;		
bANE	使能/禁止传感器端口的植	莫拟量输入。
	0 = 禁止模拟输入,所有	<b>「</b> 传感器端口配置为数字信号输入
	1 = 使能模拟输入, S1	端口可接受模拟信号输入

bCHS	模拟量输入端口选择。
	0 = 模拟量输入端口为 S1
	1 = 模拟量输入端口为 S3(只适用于 UIM242XX)
bQEM	使用正交编码器作为自闭环控制的位移反馈。
	0 = 不使用正交编码器作为位移反馈输入,开环控制
	1 = 使用正交编码器作为位移反馈输入,闭环控制
bCM	运动控制模式。
	0 = 禁止高级运动控制模块,使用基本运动控制
	1 = 如果具备高级运动控制模块,则使能高级运动控制模块
bAM	加速度输入方式。
平方秒)	0 = 数值输入,输入值被认为是每秒增加的速度,单位是 pps/sec (脉冲/
	1 = 时间输入,输入值被认为由当前速度加速到期望速度的允许时间,单 位是毫秒
bDM	减速度输入方式。
平方秒)	0 = 数值输入:输入值被认为是每秒减小的速度,单位是 pps/sec (脉冲/
	1 = 时间输入: 输入值被认为由当前速度减速到期望速度的允许时间, 单 位是毫秒
bORGIE	到达原点状态变化通知。
	0 = 禁止原点状态变化通知
	1 = 使能原点状态变化通知,如果脉冲记步器或者编码器计数到达原点, 自动发回一个信息
bSTPIE	位移指令(STP/POS/QEC)执行完毕变化通知。
	0 = 禁止位移指令执行完毕变化通知
	<b>1</b> = 使能位移指令执行完毕变化通知。位移指令执行完毕,自动发回一个 信息
bS4IE	传感器 S4 状态变化通知。
	0 = 禁止传感器 S4 状态变化通知
	1 = 使能传感器 S4 状态变化通知
bS3IE	传感器 S3 状态变化通知。
	0 = 禁止传感器 S3 状态变化通知
	1 = 使能传感器 S3 状态变化通知
bS2IE	传感器 S2 状态变化通知。
	0 = 禁止传感器 S2 状态变化通知
	1 = 使能传感器 S2 状态变化通知
bS1IE	传感器 S1 状态变化通知。

# 单/双通道 PCI-CAN 接口卡

0 = 禁止传感器 S1 状态变化通知

1 = 使能传感器 S1 状态变化通知

- 定义电机 ACK 信息反馈结构体 ACKInfo

typedef struct tagACKInfo {

bool	bENA;	// 电机使能状态
bool	bDIR;	// 电机方向
unsigned short	nMCS;	// 电机细分
int	nCUR;	// 电流
bool	bACR ;	// 电流减半
unsigned int	nSPD;	// 当前速度
unsigned long	ISTP;	// 当前步长

} ACKInfo;

- 定义电机 FBK 当前状态消息反馈的结构体 FBKInfo

typedef	struct	tagFBKInfo {		
bool		bENA;	//	电机使能状态
bool		bDIR;	//	电机方向
unsig	ned sho	ort nMCS;		// 电机细分
int		nCUR;	//	电流
bool		bACR ;	//	电流减半
unsig	ned int	nSPD;		// 当前速度
unsig	ned long	g ISTP;	//	当前步长

#### } FBKInfo;

- 定义传感器 S1, S2, S3 的状态信息结构 SFBKInfo

```
typedef struct tagSFBKInfo {
```

unsigned int	nD1;	// 传感器的电平值, 值为或
unsigned int	nD2;	// 传感器的电平值, 值为或
unsigned int	nD3;	// 传感器的电平值, 值为或
unsigned int	nAnalog;	// 传感器模拟信号量值,范围 0-4095
float	fAnalogV;	// 传感器电压值,范围 0—5V
} SFBKInfo;		

- 驱动器的型号和固件信息存储结构 MDLInfo

typedef struct	tagMDLInfo {	
char	szModelName[20];	// 驱动器型号
unsigned int	nFirewareVersion;	// 驱动器固件版本
bool	bMotion;	// 高级运动控制

bool	b2Sensor;	//2 传感器端口
bool	b4Sensor;	//4 传感器端口
bool	bEnCode;	// 外部编码器闭环控制
bool	bIntegrationEncode;	// 内部编码闭环控制

} MDLInfo;

接口函数说明(这里我们列举10个重要的函数加以说明,其他的函数调用都仿照这几种可以实现)

[1] 初始化一路 CAN 通道

BOOL InitCAN(PCIInfo *pDevInfo, PCI_CAN_PARAM *pParam)

pDevInfo入口参数, PCI_CAN 卡初始化设备参数信息, pDevInfo 结构中, iDevIndex<br/>表示设备索引号, 有一个设备时索引号为 0, 有两个可以为 0 或 1, iChannl<br/>表示通道号, 指第几路 CAN, sType 表示设备类型, 对于 PCI120,<br/>pDevInfo->sType = PCI_CAN_120。

**pParam** 入口参数, PCI_CAN 卡初始化通讯参数, 参数设置详见 PCI_CAN_PARAM 结构的定义

注: pParam 结构中的 dmasterID 参数在任何情况下都统一为 1(国际标准的定义)。

返回值 为1表示初始化成功,0表示初始化失败。

[2] 复位一路 CAN 通道

#### BOOL ResetCAN(DWORD dDevIndex, DWORD dCanIndex)

dDevIndex 设备索引号

dCanIndex 设备通道号

**返回值**为1表示复位成功,0表示复位失败。

[3] 设置要操作的站点地址,设置成功后,接下去的非全局命令都指向该驱动器

#### bool UIM_ADR(int nSiteNum)

nSiteNum 驱动器地址,大于等于 5,小于 128

**返回值**为 true 表示设置成功, false 表示设置失败。

[4] 使能驱动器

bool UIM_ENA(int iAddr = 0, bool CheckAck = true)

iAddr 驱动器地址,默认为 0,表示以最近一次 UIM_ADR 操作地址为当前操作 地址

**返回值**为 true 表示使能成功, false 表示使能失败。

[5] 驱动器脱机

bool UIM_OFF(int iAddr = 0, bool CheckAck = true)

iAddr 驱动器地址,默认为 0,表示以最近一次 UIM_ADR 操作地址为当前操作 地址

**返回值**为 true 表示脱机成功, false 表示脱机失败。

[6] 设置传感器反馈消息的回调函数,用于接收传感器消息的反馈

void UIM_SetSensorNotify_CallBack(PF_SENSOR_NOTIFY_CALLBACK pFunc)

pFunc 回调函数地址。

**PF_SENSOR_NOTIFY_CALLBACCK** 定义如下:

typedef void (CALLBACK *PF_SENSOR_NOTIFY_CALLBACK)(const SensorMSG *p_Msg)

其中, p_Msg 为返回传感器的参数信息。

**注:**这个功能可以选择性使用,如果用户需要实时反馈传感器的消息,可以开启该回调函数, 如果不需要实时反馈回调消息,最好不要开启这个回调。

**返回值** 无。

[7] 设置解释消息回调函数,用于接收反馈消息的解释

void UIM_SetMsgExplainCallBack(PF_MSG_EXPLAIN_CALLBACK pFunc);

pFunc 回调函数地址。

**PF_MSG_EXPLAIN_CALLBACCK** 定义如下:

typedef void (CALLBACK *PF_MSG_EXPLAIN_CALLBACK)(const char *msgHexReturn,const char *msgExplanReturn);

其中, msgHexReturn 为 16 进制反馈结果; □ msgExplanReturn 消息解释可读文本。

**注**: 这个功能可以选择性使用,如果用户需要实时反馈消息的解释,可以开启该回调函数,如果不需要实时反馈回调消息,最好不要开启这个回调。

**返回值** 无。

[8] 设置期望速度

bool UIM_SET_SPD(long IVal, int iAddr = 0, bool bCheckAck = true);

IVal 入口参数,速度值

iAddr 驱动器地址,默认为 0,表示以最近一次 UIM_ADR 操作地址为当前操作 地址

bCheckAck 是否检测 ACK 信息反馈

**返回值**为 true 表示设置成功, false 表示设置失败。

[9] 得到当前驱动器的脉冲速度

bool UIM_GET_SPD(long *plVAl, int iAddr = 0);

pIVAI 传出值,反馈当前速度

iAddr 驱动器地址,默认为 0,表示以最近一次 UIM_ADR 操作地址为当前操作 地址

**返回值**为 true 表示设置成功, false 表示设置失败。

[10] 卸载动态库,这个函数在程序退出时,释放动态库之前需要调用,否则会引起内存泄露

void UIM_RS232Exit(void);

返回值 void。

#### 函数调用流程

1. 首先调用 InitCAN, 初始化 CAN 卡;

**2**. 如果初始化成功,就可以进行其他的各项指令操作,比如速度操作,位移操作,主寄存器操作等;

3. 退出程序时,必须调用 UIM_RS232Exit 函数,保证系统的正确性。

#### 接口函数调用例程

附带光盘中有两个 demo 源代码演示程序,供编程参考。其中"uirobot SDK 的 demo"这个 demo 对于 c++面向对象设计提供了方便。如果用 VB, delphi,或者 C#等语言工具,可以参考"uirobot SDK 的 demo_标准 C"示例源代码程序,C/C++开发者也可以作为参考编程。 后面"库文件"文件夹下整理了开发所需要的头文件和动态库。

#### 附录A CAN2.0B标准帧

CAN标准帧信息为11个字节,包括两部分:信息和数据部分。前3个字节为信息部分。

	7	6	5	4	3	2	1	0
字节 1	FF	RTR	Х	Х	DLC(数据长度)			
字节 2		(报文识)	别码)		ID.10-ID.3			
字节 3	ID.2-ID.0			Х	Х	Х	Х	Х
字节 4	数据 1							
字节 5	数据 2							
字节 6		数据 3						
字节 <b>7</b>		数据 4						
字节 8		数据 5						
字节 9		数据 6						
字节 10	数据7							
字节 11	数据 8							

字节1 为帧信息。第7位(FF)表示帧格式,在标准帧中,FF=0;第6位(RTR)表示帧的类型,RTR=0表示为数据帧,RTR=1表示为远程帧;DLC表示在数据帧时实际的数据长度。字节2、3为报文识别码,11位有效。字节4~11为数据帧的实际数据,远程帧时无效。

#### 附录B CAN2.0B扩展帧

CAN 扩展帧信息为 13 个字节,包括两部分:信息和数据部分。前 5 个字节为信息部分。

	7	6	5	4	3	2	1	0	
字节 1	FF	RTR	Х	Х		DLC(数据长度)			
字节 2		(报文识别	间码)		ID.28-ID.21				
字节 3		ID.20-ID.13							
字节 4		ID.12-ID.5							
字节 5	ID.4-ID.0 X X X					Х			
字节6		数据 1							
字节 <b>7</b>		数据 2							
字节 8		数据 3							
字节 9		数据 4							
字节 10		数据 5							
字节 11	数据 6								
字节 12		数据7							
字节 13		数据 8							

字节1 为帧信息。第7位(FF)表示帧格式,在扩展帧中,FF=1;第6位(RTR)表示帧的类型,RTR=0表示为数据帧,RTR=1表示为远程帧;DLC表示在数据帧时实际的数据长度。字节2~5为报文识别码,其高29位有效。字节6~13为数据帧的实际数据,远程帧时无效。