

使用手册

USBC 9100

工业级智能 USB-CAN 总线转换器

[知识产权保护声明]

使用UIROBOT产品前请注意以下三点:

- UIROBOT的产品均达到UIROBOT使用手册中所述的技术功能要求。
- UIROBOT愿与那些注重知识产权保护的客户合作。
- 任何试图破坏UIROBOT器件代码保护功能的行为均可视为违反了知识产权保护法案和条列。如果这种行为导致在未经UIROBOT授权的情况下,获取软件或其他受知识产权保护的成果,UIROBOT有权依据该法案提起诉讼制止这种行为。

[免责声明]

本使用手册中所述的器件使用信息及其他内容仅为您提供便利,它们可能在未来版本中被更新。确保应用符合技术规范,是您自身应 负的责任。UIROBOT对这些信息不作任何形式的声明或担保,包括但不限于使用情况、质量、性能、适销性或特定用途的适用性的声 明或担保。UIROBOT对因这些信息及使用这些信息而引起的后果不承担任何责任。如果将UIROBOT器件用于生命维持和/或生命安全 应用,一切风险由买方自负。买方同意在由此引发任何一切伤害、索赔、诉讼或费用时,会维护和保障UIROBOT免于承担法律责任和 赔偿。未经UIROBOT同意,不得以任何方式转让任何许可证。

[商标和外观设计声明]

UIROBOT 的名称和徽标组合为 UIROBOT Ltd.在中国和其他国家或地区的注册商标。 UIROBOT的UIM24XXX系列步进电机(控制)控制器和UIM25XX系列转换控制器外观设计均以申请专利保护。

[USBC9100 产品订购说明]

在订购 USBC9100 产品时请按以名下格式提供产品号,以便我们准确及时地为您提供产品:

USBC9100 产品牌号

USB CAN 工业级智能 CAN 转换器

性能指标

- 尺寸: 72mm * 36mm * 11mm
- 系统性能: 32 位处理器 48MIPS
- 帧流量: 业界最优性能,达到 CAN 的理论极限,实测每秒钟流量超过 6500 帧
- 传输方式: CAN 接口透明转换,兼容 CAN2.0A、CAN2.0B、CANOPEN 协议, USB 接口兼容 USB1.1 和 USB2.0 协议
- 通道数目:1路,可叠加使用,最多100台,形成100通道
- 传输介质:屏蔽或非屏蔽双绞线
- 传输速率: CAN 控制器波特率在 125Kbps~1Mbps 之间可选
- 通讯接口:标准 CAN-bus 接口,起始端电阻自由配置
- 总线长度及节点数:单路总线上最多可接 110 个节点,最长通讯距离 10 公里
- 供电形式: 使用 USB 总线电源, 无需外部电源
- 占用资源:即插即用,资源自动分配
- 工作温度: -40℃~+85℃
- 存储温度:-50℃~+105℃

简介

USBC9100 是兼容 USB1.1 和 USB2.0 总线,带有 1 路 CAN 接口的工业级智能型 CAN 数据接口卡采用 USBC9100 智能 CAN 转换器,PC 可以通过 USB 总线连接至 CAN 网络,构成实验室、工业控制、智能小区等 CAN 网络领域中数据处理、数据采集。

USBC9100 智能 CAN 转换器是 CAN 产品开发、CAN 数据分析的强大工具;同时,具有体积小、即插即用等特点,也是便携式系统用户的最佳选择。

USBC9100 智能 CAN 转换器上自带光电隔离模块,隔离电压达 2500V,使 USBC9100 智能 CAN 转换器避免由于地环流的损坏,增强系统在恶劣环境中使用的可靠性。

USBC9100 智能 CAN 转换器配有可在 Win9X/Me、Win2000/XP、Server 2003、Vista、 Win 7 下工作的驱动程序,并提供 VB, VC、C++下的应用例程。

目录

简介		3
1.0	设备安装	5
1.1	硬件接口描述	5
1.2	系统连接	5
1.3	驱动程序安装	6
1.4	产品使用	8
2.0	用户编程	10
2.1	结构体定义	10
2.2	接口函数说明	12
2.3	接口库函数使用方法	23
2.4	接口库函数使用流程	23
附录A C	AN2.0B标准帧	24
附录B C	AN2.0B扩展帧	25
附录C	外形尺寸图	26
附录D	转换器安装示意图	27

1.0 设备安装

1.1 硬件接口描述

USBC9100 智能 CAN 转换器带有 1 路 CAN 通道,最多可同时叠加 100 台,可以用于连接一个 CAN-bus 网络或者 CAN-bus 接口的设备。USBC9100 智能 CAN 转换器接口布局如下:

图 0-1 USBC9100 转换器接线端子

CAN-bus 通道由 1 个 5Pin 接线端子引出。接线端子的引脚详细定义如表 0-1 所示。

表 0-1 USBC9100 端口功能

引脚	标号	说明
1	СН	CANH 信号线
2	CL	CANL 信号线
3	FG	屏蔽线、地线(FG)
4	R+	终端电阻(内部连接到 CANH)
5	R–	终端电阻(内部连接到 CANL)

1.2 系统连接

USBC9100 智能 CAN 转换器和 CAN-bus 总线连接的时候,仅需要将 CANL 连 CANL, CANH 连 CANH 信号。CAN-bus 网络采用直线拓扑结构,总线的 2 个终端需要安装 120 Ω的终端电阻;如果节点数目大于 2,中间节点不需要安装 120 Ω 的终端电阻。对于分支 连接,其长度不应超过 3 米。CAN-bus 总线的连接见图 0-2 所示。

图 0-2 CAN-bus 网络的拓扑结构

1.2.1 终端电阻

为了增强 CAN 通讯的可靠性, CAN 总线网络的两个端点通常要加入终端匹配电阻,如图 0-2 所示。终端匹配电阻的值由传输电缆的特性阻抗所决定。例如双绞线的特性阻抗为 120Ω,则总线上的两个端点也应为 120Ω终端电阻。当 USBC9100 位于 CAN-bus 网络 的一个端点上时,需要在外部端子上安装 120Ω终端电阻,即在"R-"引脚和"R+"引脚接入 终端电阻。

提示:当安装插件封装形式的终端电阻时,终端电阻两端的金属引脚不可短路在一起,否则会损坏设备。

1.3 驱动程序安装

USBC 9100 智能 CAN 转换器使用 USB 直接供电并提供智能驱动安装包,安装步骤如下:

- 1) 将 USBC 9100 通过 USB 延长线连接至上位机;
- 2) 打开设备管理器,弹出如下窗口:

工业级智能 USB-CAN 总线转换器

3. 设备管理器	
文件(F) 操作(A) 查看(V) 帮助(H)	
🖛 🔿 📷 🔛 🖬 📖 🕸 😭 🚱	

3) 在"未知设备"处点击右键,选择"更新驱动程序软件",弹出如下界面:

		8
0	更新驱动程序软件 - 未知设备	
	您想如何搜索驱动程序软件?	
	◆ 自动搜索更新的驱动程序软件(S) Windows 将在您的计算机和 Internet 上查找用于相关设备的最新驱动程序软件,除非在设备安装设备中蒸用该功能。	
	→ 浏览计算机以查找驱动程序软件(R) 手动查找并安装驱动程序软件。	
	[取消

4) 选择上图所示的选项,在下图所示的浏览选项内找到驱动程序对应的文件夹,选择 "USBC Driver Install"文件夹,点击"确定",选择"下一步":

浏览计算机上的	驱动程序文件		
住以下位直提紧巡动 G:\2012-10-12转移	勤予软件: \最新版说明书\USBC Driver Install	浏览	i(R)
☑包括子文件夹(1)	浏览文件夹 选择包含您的硬件的驱动程序的文件夹。	23	
1121-0040.0	UIM_TestDemo20120108	*	
→ 八丁厚わ山 此列表将显示 所有驱动程序	ia64 ↓ ia64		一类别下的
	×86	*	

5) 程序安装成功后会弹出如下界面,至此,驱动程序安装完毕:

		x
0	① 更新驱动程序软件 - USBC9100	
	已安装适合设备的最佳驱动程序软件	
	Windows 已确定该设备的驱动程序软件是最新的。	
	USBC9100	
	关闭(C	

1.4 产品使用

2.1.1 测试软件概述

该测试软件使用极为方便,点击连接按钮后就可以发送和接受数据了,发送和接受的数据 和状态在下面的信息提示框中有很清楚的显示。

UIM_241_242微型一体化步进电机上	位演示软件					
UROEOT V3.12 和始代、COM7 ・ 和加齢化の 波技事 9600	选择语言 Chinoto 切换通讯 DOME 此材率设置。	■本设置 ■机参数设置 場時器设置 板动器型号 主務存置 当前	亦都敢 能移动器 殿 机 脱动参数 电机转态	K 感器 I2 b) S12CON ATCONH STORE BQT	S34CON ATCONL 在感器状态 UID820/828	う単規式 初時模式
输入指令 当前指令 		田辺住理型 田辺住理型 田辺住理型 田辺位理型 田辺伯祥型 田辺信码器位置 の 田辺信码 田辺信	 ・決定。 ・売請。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		が快速。 加速模式设置 値(1-65,000,000 間(1-60,000ms) 度 遊曲 0 減速模式设置 対値(1-65,000,000 間(1-60,000ms) 定 遊曲 0	193 - 193 - 193 - 195(s) - 193(s)
【 ②同报文(十六)E制)		/編码器位置 透回报文解释	(2):0-	最大時停班		192

2.1.2 测试软件详细介绍

1) 搭建好 USBC 9100 及 UIM242 系列驱动控制器硬件平台,设备供电,不同设备之间需 要共地;

- 2) 初次使用时点击"切换通讯"按钮,选择"CAN",点击"确定";
- 3) 依次选择 CAN 卡型号 "UI_USBC9100"、CAN 通道 "CANO"、比特率 "800"、主机地址 "1";
- 4) 点击"初始化 CAN"-----"切换单机网络模式"----"全局注册",右下方的列表内即会 出现当前的节点地址及型号,选中站点 ID 后即可对该节点进行控制;
- 5) 需要特殊说明的是, USBC9100 的 CAN 接口为完全透明转换,发送的数据帧的格式依 照下位机通讯协议而定,此测试软件仅针对 UIRobot UIM242 系列下位机测试使用。

V3.12 Chir V3.12 CAN通讯 XAN卡型号 ULUS89100 ・ CAN通道「 (約率 1800 ・ 主机地址 1 ・	始篇 hese ▼ 切換通讯 CAN0 ▼ 关闭	基本设置 电 电机参数设置 编码器设置 级动器型号 主符存器	 (状态参数 作 (供能振动器 (税 机 (税 机 (税 机) (M 1) <	核感器控制 S12CON ATCONH STORE SQT	S34CON ATCONL 传感器状态 UID820/828	くく 初稿単机 阿紹観式 くく	CAN总统「播操作 通讯速率设置 股机 日电源 电流 AMP 細分 6102040	 減注册 減半 炭布 8 ○ 16
\$入指令 前指令 ADR6; 近指令	发活命令 帮助	 送払付空制 期間空速度 期間(268/管理 期間(468/管理 期間(468/管理 期間(468/管理 期間(468/管理 第1 第2 第3 第3 第3 第3 第3 第3 第3 第4 第4 第4 第5 10 11 12 13 14 14<td>응품 (응품 (응품 (응품</td><td>「高級送却 「前 「前 最大自助連</td><td>b设置 folle現点で改置 点(1-65,000,000 pp 尿(1-60,000ms) 度 直由。 の 度 直由。 0</td><td>n/s)</td><td>gORG 速度 0 脉冲 0 位置 0 編码器: 0</td><td>发布 发布 发布 发布</td>	응품 (응품 (응품 (응품	「高級送却 「前 「前 最大自助連	b设置 folle現点で改置 点(1-65,000,000 pp 尿(1-60,000ms) 度 直由。 の 度 直由。 0	n/s)	gORG 速度 0 脉冲 0 位置 0 編码器: 0	发布 发布 发布 发布
回报文(十六进制) 「开启消息解释	有空 日志	「 开启出控(连续查询) 速度 位移增量 开环绝对位置 编码器位置 逐回报文解释	间隔 500 • ms 查询 查询 查询 查询	の 数 で 时 成連 最大時停達	城連根式段置 値(1-65,000,000 p) 间(1-60,000ms) 度 <u>成</u> 确 度 <u></u> 成确 度 <u></u> 成确 目 0	0//s) Q.M. Q.M.	34回切換至 6, 接下去的指令 驱动器 「 多迭模式(请选择同一类 <u> </u>	加友到1 型版动器 日日 1228
	*					*		

2.0 用户编程

用户如果只是利用 USBC9100 智能 CAN 转换器进行 CAN 总线通信测试,可以直接利用 随机提供的测试软件,进行收发数据的测试。如果用户打算编写自己产品的软件程序。请 认真阅读以下说明。UIRobot 提供基于 VC、C++的完整例程。

2.1 结构体定义

2.1.1 CAN_MSG_OBJ

功能:在 VCI_Transmit 和 VCI_Receive 函数中被用来传递 CAN 信息帧。

typedef struct _CAN_MSG_OBJ				
ID;				
Reserved0;				
Reserved1;				
SendType;				
IDE;				
RTR;				
DataLen;				
Data[8];				
Reserved [3];				
DBJ, * P_CAN_MSG_OBJ;				
	_CAN_MSG_OBJ ID; Reserved0; Reserved1; SendType; IDE; RTR; DataLen; Data[8]; Reserved [3]; DBJ, * P_CAN_MSG_OBJ;			

ID	报文 ID = SID(11 位) EID(18 位)。			
Reserved0/1	保留,赋值为0。			
SendType	发送帧类型,只有在此帧为发送帧时有意义。			
	0 = 正常发送			
	1 = 自发自收			
IDE	是否是远程帧。			
	0 = 数据帧			
	1 = 远程帧			
RTR	是否是扩展帧。			
	0 = 标准帧			
	1 = 扩展帧			
DataLen	表明 Data[8]数组内的字节数,长度不能超过 8。			
Data	报文的数据。			
	CAN 数据包原为 8 个字节,为了支持 RS232,次数据的长度增加为 12			
Reserved	系统保留。			

工业级智能 USB-CAN 总线转换器

2.1.2 CAN_CONFIG_OBJ

功能: 定义了初始化 CAN 的配置。

typedef struct	_ CAN_CONFIG_OBJ
{	
DWORD	AccCode;
DWORD	AccMask;
DWORD	Reserved;
UCHAR	Filter;
UCHAR	Timing0;
UCHAR	Timing1;
UCHAR	Mode;
} CAN_CONFIG	G_OBJ,*P_CAN_CONFIG_OBJ;
AccCode	验收码。

AccMask	屏蔽码。
Reserved	保留。
Filter	滤波方式,必须为0。
Timing0	定时器0。
Timing1	定时器 1。
Mode	模式,必须为0。

备注: Timing0 和 Timing1 用来设置 CAN 波特率,几种常见的波特率设置如下:

CAN 波特率	定时器 0	定时器1
5Kbps	0xBF	0xFF
10Kbps	0x31	0x1C
20Kbps	0x18	0x1C
40Kbps	0x87	0xFF
50Kbps	0x09	0x1C
80Kbps	0x83	0xFF
100Kbps	0x04	0x1C
125Kbps	0x03	0x1C
200Kbps	0x81	0xFA
250Kbps	0x01	0x1C
400Kbps	0x80	0xFA
500Kbps	0x00	0x1C
666Kbps	0x80	0XB6
800Kbps	0x00	0x16
1000Kbps	0x00	0x14

2.2 接口函数说明

2.2.1. 查找所有在线的 USBC 设备

USBCAN_API DWORD USBC_ListDevices(PDWORD pDevIndexList);

pDevIndexList 存放设备索引号列表的指针。

返回值 找到的设备数量。

示例

```
USBC_DevIndex_Count = USBC_ListDevices ((PDWORD)&USBC_DevIndex_List[0]);
if (USBC_DevIndex_Count == 0)
{
   printf ("USBC: No USBC9100 device is found!\n");
   return;
}
else
{
   printf("USBC: Number of USBC9100 found >>> [ %d ] \n", USBC_DevIndex_Count);
   printf("\nUSBC: USBC Device Index List:\n");
   printf("===
                                    -----\n\n");
       for (i=0;i<USBC_DevIndex_Count;i++)</pre>
       {
              printf(" No.%d >>> Device Index = % d \n", i+1, USBC_DevIndex_List[i]);
   printf("USBC: Please make sure all device indexes are unique! \n");
   printf("USBC: If any two device indexes are overlapped, please use
        USBC_SetDeviceIndex() to assign a new index number to one of the above
        devices.\n");
}
```

```
2.2.2.
         为 USBC 分配设备索引号
USBCAN_API DWORD USBC_SetDevicesIndex(DWORD dwDevIndex);
dwDevIndex
                 期望的设备索引号。
返回值
                 为1表示操作成功,为-1表示操作失败。
示例
  printf("Press any key to start Device Index Assignment (Only one USBC should be plugged
        in) ...");
  _getch();
  printf("\nPlease type the Device Index Number to be assigned >>> ");
  s = _getch();
  printf("\n\n");
  DevIndex = (BYTE) atoi(&s);
  USBC_DevIndex_Count = USBC_SetDevicesIndex(DevIndex);
  If (USBC_DevIndex_Count == 0)
  {
      printf("USBC: FAILED, No USBC9100 was found! \n");
      return;
  }
  else if (USBC_DevIndex_Count == 1)
  {
      printf("USBC: SUCCESS, USBC9100 Device Index is set to %d! \n", DevIndex);
  }
  else
  {
      printf("USBC: FAILED, %d USBC9100s found, please keep only one USBC9100
             plugged in. \n", USBC_DevIndex_Count);
  }
  return;
```

2.2.3. 打开 USBC 设备

USBCAN_API DWORD USBC_OpenDevice(DWORD DevIndex, DWORD dwReserved);

DevIndex 设备索引号。

返回值为1表示操作成功,-1表示操作失败。

示例

printf("\nPlease select a device index to start >>> ");
s = _getch();
printf("\n\n");
DevIndex = (BYTE) atoi(&s);
if(USBC_OpenDevice(DevIndex,0) == -1)
{
 printf("USBC: OPEN DEVICE %d FAILED!\n",DevIndex);
 goto ending;
}
else
{
 printf("USBC: OPEN DEVICE %d SUCCESS!\n",DevIndex);
}

2.2.4. 关闭 USBC 设备

USBCAN_API DWORD USBC_CloseDevice(DWORD dwDevIndex);

dwDevIndex 设备索引号。

返回值为1表示操作成功,-1表示操作失败。

示例

BYTE DevIndex = 1;

USBC_CloseDevice(DevIndex);

2.2.5. 初始化 USBC 设备的 CAN 模块

USBCAN_API DWORD USBC_InitCan (DWORD dwDevIndex, DWORD dwDevPort, P_CAN_CONFIG_OBJ pInitConfig);

dwDevIndex	设备索引号。
dwDevPort	该设备的 CAN 端口号。
plnitConfig	配置参数结构。
返回值	为1表示操作成功,-1表示操作失败。
备注	初始化后,需要用 USBC_StartCan()开启 CAN 模块。

示例

InitConfig.AccCode = 0x08004001;

InitConfig.AccMask = 0x1FFFFFF;

InitConfig.Filter = 0;

InitConfig.Mode = 0;

InitConfig.Timing0 = 1;

InitConfig.Timing1 = 0;

if(USBC_InitCan(DevIndex, 0, &InitConfig) == 1)
{

printf("\nUSBC: Initial No [%d] USBC Device CAN Module SUCCESS!\n", DevIndex);

} else

{

}

printf("\nUSBC: Initial No [%d] USBC Device CAN Module FAILED!\n", DevIndex);

2.2.6. 关闭 USBC 设备的 CAN 模块

USBCAN_API DWORD USBC_ResetCan(DWORD dwDevIndex, DWORD dwDevPort);

dwDevIndex 设备索引号。

dwDevPort 该设备的 CAN 端口号。

返回值为1表示操作成功,-1表示操作失败。

示例

if(USBC_ResetCan(DevIndex, 0) == 1)
{

printf("\nUSBC: Reset No [%d] USBC Device CAN Module SUCCESS!\n", DevIndex);

} else {

}

printf("\nUSBC: Reset No [%d] USBC Device CAN Module FAILED!\n", DevIndex);

2.2.7. 开启 USBC 设备的 CAN 模块

USBCAN_API DWORD USBC_StartCan(DWORD dwDevIndex, DWORD dwDevPort);

dwDevIndex 设备索引号。

dwDevPort 该设备的 CAN 端口号。

返回值为1表示操作成功,-1表示操作失败。

示例

if(USBC_StartCan(DevIndex,0) == 1)

printf("\nUSBC: Start No [%d] USBC Device CAN Module SUCCESS!\n", DevIndex);

} else {

}

{

printf("\nUSBC: Start No [%d] USBC Device CAN Module FAILED!\n", DevIndex);

2.2.8. 发送 CAN 报文

USBCAN_API DWORD USBC_Transmit(DWORD dwDevIndex, DWORD dwDevPort, P_CAN_MSG_OBJ pSend, ULONG ulSize);

dwDevIndex	设备索引号。
dwDevPort	该设备的 CAN 端口号。
pSend	发送 CAN 报文参数结构(可以是数组)。
ulSize	需要发送的 CAN 报文帧数。
返回值	成功发送的帧数,为-1表示操作失败。
示例	

SndNum =53;

for (i =0; i<400; i++)							
ł	Test_CANSnd[i].ID = 0x0	1280007;	//SID=0000 0001 0010 10 //EID = 00 0000 0000 0000 0111 //SPD=1000				
	Test_CANSnd[i].IDE	= 1;					
	Test_CANSnd[i].DataLen = 4;						
	Test_CANSnd[i].Data[0]	= 0xE8;	//0x 00 00 03 e8 (hex) = 1000 (bcd)				
	Test_CANSnd[i].Data[1]	= 0x03;					
	Test_CANSnd[i].Data[2]	= 0;					
	Test_CANSnd[i].Data[3]	= 0;					
	Test_CANSnd[i].Data[4]	= 5;					
	Test_CANSnd[i].Data[5]	= 6;					
	Test_CANSnd[i].Data[6]	= 7;					
}	Test_CANSnd[i].Data[7]	= 8;					
T0 =	= timeGetTime();						
retN	lum = USBC_Transmit(De	vIndex, 0, &Te	st_CANSnd[0], SndNum);				
T1 =	= timeGetTime() - T0;						
if(r	if(retNum == -1)						
١	printf("\nUSBC: Send me	ssage to No.[%	d] device FAILED!\n",DevIndex,SndNum);				
	printf(" >>>> Number of message sent >>> [%d]\n", retNum);						
ı	printf(" >>>> Time lapse >	>>> [%d]millis	seconds\n", T1);				
} else	•						
{ }	printf("\nUSBC: Send message to No.[%d] device SUCCESSED!\n", DevIndex, SndNum);						

UI Robot Technology Co. Ltd.

2.2.9. 接收 USBC 内缓存的 CAN 报文

USBCAN_API DWORD USBC_Recieve (DWORD dwDevIndex, DWORD dwDevPort, P_CAN_MSG_OBJ pReceive, ULONG ulSize, UINT uiWaitTime);

dwDevIndex	设备索引号。
dwDevPort	该设备的 CAN 端口号。
pReceive	接收 CAN 报文参数结构(可以是数组)。
ulSize	期望接收的 CAN 报文帧数。
uiWaitTime	等待超时定时器(单位:毫秒)。
返回值	成功接收的帧数,为-1表示操作失败。

```
示例
```

rcvNum = retNum;
T0 = timeGetTime();
retNum = USBC_Recieve(DevIndex, 0, &Test_CANRcv[0], rcvNum, 2000);
T2 = timeGetTime() - T0;
<pre>if(retNum == -1) { printf("\nUSBC: Receive message from No.[%d] device FAILED!\n", DevIndex); } else { printf("\nUSBC: Receive message from No.[%d] device SUCCESSED!\n", DevIndex); printf("\n=======\n"); printf("MSG No ID Data From ID To ID DataLen\n\n"); for (i =0; i< retNum; i++) { from_id=((Test_CANRcv[i].ID>>8)&0x3E0)+(Test_CANRcv[i].ID>>19)&0x01F; to_id=((Test_CANRcv[i].ID>>3)&0x3E0)+(Test_CANRcv[i].ID>>24)&0x01F; printf("%d 0x%lx %x %x %x %x %x %x %x %x %x %d %d %d\n",</pre>
, printf("\n=======\n");
printf("\n >>>> Number of message received >>> [%d]\n", retNum);

2.2.10. 查询 USBC 内等待 HOST 接受的报文数量

USBCAN_API DWORD USBC_GetReceiveNum(DWORD dwDevIndex, DWORD dwDevPort);

dwDevIndex设备索引号。dwDevPort该设备的 CAN 端口号。返回值等待接收的帧数,为-1 表示操作失败。

示例

retNum = USBC_GetRecieveNum(DevIndex, 0);
if(retNum == -1)
{
 printf("\nUSBC: Get number of message waiting to receive of No.[%d] device
 FAILED!]\n", DevIndex);
}
else
{
 printf("\nUSBC: Get number of message waiting to receive of No.[%d] device
 SUCCESSED!]\n", DevIndex);
 printf(" >>>> The number of message waiting to receive is [%d]\n",retNum);
}

2.2.11. 清空 USBC 设备的 CAN 模块的接收缓冲区

USBCAN_API DWORD USBC_ClearBuffer(DWORD dwDevIndex, DWORD dwDevPort);

dwDevIndex 设备索引号。

dwDevPort 该设备的 CAN 端口号。

返回值为1表示操作成功,为-1表示操作失败。

示例

if(USBC_ClearBuffer(DevIndex, 0) == -1)
{
 printf("\nUSBC: Clear buffer of No.[%d] device FAILED!\n", DevIndex);
}
else
{
 printf("\nUSBC: Clear buffer of No.[%d] device SUCCESSED!\n ", DevIndex);
}

2.3 接口库函数使用方法

首先,把库函数文件都放在工作目录下。

- VC 调用动态库的方法
 - 1) 在扩展名为.CPP 的文件中包含 USBC9100.h 头文件;

如: #include"USBC9100.h"

2) 在工程的连接器设置中连接到 Winmm.lib 文件。

2.4 接口库函数使用流程

附录A CAN2.0B标准帧

CAN 标准帧信息为 11 个字节,包	l括两部分:信息和	数据部分。前3/	个字节为信息部分。
---------------------	-----------	----------	-----------

	7	6	5	4	3	2	1	0
字节 1	FF	RTR	Х	Х	DLC(数据长度)			
字节 2	(报文识别码)					ID.10-ID	0.3	
字节 3	ID.2-ID.0			Х	Х	Х	Х	Х
字节 4	数据 1							
字节 5	数据 2							
字节6	数据3							
字节 7	数据 4							
字节 8	数据 5							
字节 9	数据 6							
字节 10	数据7							
字节 11	数据 8							

字节1为帧信息。第7位(FF)表示帧格式,在标准帧中,FF=0;第6位(RTR)表示帧的类型,RTR=0表示为数据帧,RTR=1表示为远程帧;DLC表示在数据帧时实际的数据长度。字节2、3为报文识别码,11位有效。字节4~11为数据帧的实际数据,远程帧时无效。

附录B CAN2.0B扩展帧

CAN 扩展帧信息为 13 个字节,包括两部分:信息和数据部分。前 5 个字节为信息部分。

	7	6	5	4	3	2	1	0	
字节 1	FF	RTR	Х	Х		DLC(数据长度)			
字节 2		(报文识别码)			ID.28-ID.21				
字节3	ID.20-ID.13								
字节 4		ID.12-ID.5							
字节 5	ID.4-ID.0 X X X							Х	
字节6	数据 1								
字节 7	数据2								
字节8		数据3							
字节 9	数据 4								
字节 10	数据 5								
字节 11	数据 6								
字节 12	数据7								
字节 13	数据 8								

字节1为帧信息。第7位(FF)表示帧格式,在扩展帧中,FF=1;第6位(RTR)表示帧的类型,RTR=0表示为数据帧,RTR=1表示为远程帧;DLC表示在数据帧时实际的数据长度。字节2~5为报文识别码,其高29位有效。字节6~13为数据帧的实际数据,远程帧时无效。

附录C 外形尺寸图

附录D 转换器安装示意图

